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Fig. 1: We provide a new off-road driving dataset for self-supervised learning tasks. Multi-modal data is collected as the robot
is driven through several types of terrain that present challenging scenarios to perception, planning, and control algorithms.

Abstract— We present TartanDrive 2.0, a large-scale off-road
driving dataset for self-supervised learning tasks. In 2021 we
released TartanDrive 1.0, which is one of the largest datasets
for off-road terrain. As a follow-up to our original dataset,
we collected seven hours of data at speeds of up to 15m/s
with the addition of three new LiDAR sensors alongside the
original camera, inertial, GPS, and proprioceptive sensors. We
also release the tools we use for collecting, processing, and
querying the data, including our metadata system designed
to further the utility of our data. Custom infrastructure
allows end users to reconfigure the data to cater to their
own platforms. These tools and infrastructure alongside the
dataset are useful for a variety of tasks in the field of off-
road autonomy and, by releasing them, we encourage collab-
orative data aggregation. These resources lower the barrier to
entry to utilizing large-scale datasets, thereby helping facilitate
the advancement of robotics in areas such as self-supervised
learning, multi-modal perception, inverse reinforcement learn-
ing, and representation learning. The dataset is available at
https://github.com/castacks/tartan drive 2.0.

I. INTRODUCTION

As the state of the art in autonomous driving improves,
robots are expected to handle increasingly complex tasks.
In off-road driving, this translates to situations such as a
robot knowing whether the dark brown path in front of it
is dry dirt or thick mud, whether it is worth it to take
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a shortcut through tall grass, and when to preemptively
increase velocity in order to make it up a hill. Navigating
these decisions requires behaviors that are extremely difficult
to robustly design and tune by hand. Many of the currently-
researched solutions to this challenge involve the adoption
of large neural networks and data-driven models. For the
task of on-road driving in urban scenarios, there are several
large datasets available [1–4]. These datasets were feasible
not only because of the resources present at the institutions
that collected them, but also because of the inherent everyday
nature of on-road driving. There exist fewer datasets for off-
road driving, primarily because the nature of off-road terrain
makes gathering enough data uniquely difficult. Collecting
samples in simulation is often insufficient due to the com-
plexity of calculating the dynamics of terrain in complex
environments. In fact, most real-world scenarios that are
hard to accurately simulate are the same ones which produce
complex situations for autonomous off-road agents, such as
dense foliage and slippery surfaces. However, collecting data
in real-life presents logistics challenges such as preserving
driver safety and dealing with frequent vehicle damage
and wear. These difficulties have resulted in a scarcity of
available data for off-road driving.

While the number of off-road datasets has been growing
[5–12], many of them are still limited in sample size,
modality, or difficulty [13]. This is often due to their focus on
specific tasks such as semantic segmentation, which requires
manual labeling effort. Scaling up these datasets would come
either at the cost of time or label quality. It is possible
to use multiple datasets together to train a model, but the
variability of off-road terrain often causes inconsistency in
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labels across datasets [14]. The difficulty of generating large
amounts of manually labeled data in off-road terrain suggests
that self-supervised learning is essential to outperforming
prior methods. Many works have shown that self-supervised
methods can be used to learn strong representations [15–17],
and some works have already shown how it can be used for
various tasks in off-road driving environments [18–21]. We
argue that in order to scale up the amount of data for off-
road tasks, datasets should be designed to be task-agnostic
and with self-supervised learning in mind.

In 2021, we released TartanDrive, a multi-modal off-road
driving dataset designed for dynamics modeling [5]. In this
work we present TartanDrive 2.0, a larger dataset geared
towards self-supervised learning methods. The contributions
of this dataset over the previous generation are as follows:

1) More sensors and data: In our original work, we
argue that multiple modalities are essential for learning
models for off-road terrain. To that end, we add LiDAR
as an additional modality. We also collect seven hours
over the five hours of data present in the original
dataset, at higher average speeds and including some
new areas, as well as areas present in the previous
dataset that have dramatically changed over the past
two years.

2) Better infrastructure for end-users: We have im-
proved the infrastructure in order to improve ease-of-
use and utility of the dataset, such as the ability to re-
process the data based on user-specified configurations.
We also implement a metadata system that filters and
groups data by a variety of properties.

3) Open-source data collection tooling: Our data collec-
tion process has been constructed in a way that allows
us to continually release more data over time as the
seasons change and as we add more modalities. By
releasing our tools and framework, others can collect
their data and easily merge it with our own to create
larger datasets.

II. RELATED WORK

Collecting general driving datasets is a common pursuit,
the largest ones coming from companies gathering data in
urban scenarios. For example, nuScenes by Motional is a
dataset containing 1.4 million images and 390,000 LiDAR
sweeps, with corresponding 3D object annotations [3,4]. The
Waymo Open Dataset is another example with over a million
images and LiDAR pointclouds [1,2]. Both datasets include
infrastructure and tools to query and process these massive
amounts of data in ways that support various downstream
learning tasks and benchmarks that are not often seen in
smaller datasets. There are also other efforts in collecting
data for on-road environments, such as the RACECAR
dataset that includes raw and processed sensor data from
autonomous racecars driving at high speeds [22].

A number of earlier works have tried to circumvent the
issues due to the lack of real-world off-road driving data
by utilizing simulation environments. Tremblay et al. show
how training a neural network on multiple modalities in

Fig. 2: The ATV used for data collection (left); The primary
sensor payload on the vehicle (right)

Fig. 3: The 3D scan of the ATV. The rear half of the scan
is cropped in the left picture to increase clarity of the front
payload in the image.

simulation can allow a robot to predict its dynamics in
unseen real-world data [23]. Sivaprakasam et al. collect data
in simulation of a robot driving over obstacles in order to
train a model that predicts the difference between a desired
path and its resulting path [24].

Now, more off-road datasets have been collected. RUGD
contains over 7,000 images in a variety of off-road terrain
with manually-labeled semantic segmentation masks [7].
Rellis-3D includes annotations for 6,235 images and 13,556
scans from two different LiDARs, as well as the bags that
they originally recorded which also contain IMU, GPS, and
stereo image data. Sharma et al. created an off-road image
dataset where, rather than creating semantic masks, they label
regions in an image based on their traversability by different
types of vehicles [8]. The first version of TartanDrive has
also been available for two years and has been used for a
number of tasks even outside the domain of off-road driving.
Shah et al. have used this data as part of a bigger dataset
that was used to train a large foundation model designed
with vision-based robotic navigation in mind [25].

III. THE DATASET

The original TartanDrive dataset was designed for the task
of dynamics prediction. When designing TartanDrive 2.0
we aimed to support a broader set of tasks in perception,
planning, and control. Thanks to more sensor modalities and
better infrastructure, the new data that we have collected



driving through diverse terrain and unique scenarios is more
broadly applicable than before.

A. The Platform

We use the same Yamaha Viking All-Terrain Vehicle
(ATV) as before (Fig. 2), first modified by Mai et al. [26].
We have modified it again in order to equip it with three
LiDAR sensors. There are two Velodyne VLP-32 sensors
mounted to the front of the roof of the vehicle, with one
tilted downwards to increase coverage of the ground closer
to the vehicle. There is also a Livox Mid-70, mounted under
the MultiSense camera, which provides more information on
objects directly in front of the vehicle. Using a Faro Focus
Scanner, we generated a 3D pointcloud model of the ATV as
shown in Fig. 3 and provide it with the dataset so that users
can take their own measurements (e.g. distance between
the wheel axle and some arbitrary point on the vehicle, or
distance between the GPS antenna and the ground) for their
own specific experiments.

B. Data Collection

The site for collecting data is the same location in western
Pennsylvania as TartanDrive 1.0, consisting of terrain such
as narrow paths, dense foliage, rocky terrain, dirt paths, and
steep hills. It is worth noting that some areas of the site have
changed significantly due to natural causes such as erosion
or overgrowth as shown in Fig. 4. All the data included
was acquired by a human tele-operating the vehicle. Each
sequence of data is annotated with the following metadata:

• Driver ID and robot
• Number of people in the vehicle
• Date/time
• Context (e.g. data collection)
• Weather conditions (e.g. dry, damp, snow)
• Lighting conditions (e.g. sunny, overcast, sunset)
• Course ID or general location (from a pre-defined list)

as well as any other information relevant to that specific run.
We emphasize that recording this metadata makes the dataset
significantly easier to use, especially as the dataset becomes
larger. At the end of the collection, a post-processor records
information such as top speed, average speed, duration,
and sensors present. During data collection, a co-pilot takes
time-stamped annotations of relevant or unique events such
as sensor failure or something uncommon such as a deer
spotting in front of the vehicle. Additionally, in some runs
the co-pilot periodically annotates a weak driving score
ranging from 1-5 where 5 signifies ideal driving. Recording
this metadata provides more structure in the data which
significantly improves the utility of the dataset when used
in combination with our post-processing pipelines.

C. Raw Data

Most of the sensors on our platform have already been
detailed [5,27], but all raw data is briefly summarized below:

Fig. 4: The data collection site has changed significantly
since our last dataset released in 2021. For example, some
older dirt paths (top, shown in red) are now covered in tall
grass (bottom).

Fig. 5: Example coverage provided by our LiDAR sensors.
Purple and yellow points come from the two Velodynes, and
cyan points from the Livox.

1) Pointclouds: We record incoming pointclouds from
two Velodyne VLP-32 LiDAR sensors and a Livox Mid-
70. We also provide extrinsics so that they can be merged
into a single pointcloud. An example of the coverage they
provide is shown in Fig. 5. All LiDARs are configured to
run at 10Hz.

2) Images: A Carnegie Robotics MultiSense S21 is used
to provide stereo images, specifically greyscale images from
both cameras as well as RGB images from the left camera
at 10Hz each.

3) IMU and Pose: A NovAtel PROPAK-V3-RT2i GNSS
provides IMU data at 100Hz. This is fused with incoming
GPS data to provide a pose estimate at 50Hz. The MultiSense
also provides IMU data at 400Hz.

4) Teleoperation: The driver uses a joystick controller to
send steering commands, which are then recorded alongside
the values of the current steering angle (actuation on steering
commands is not instantaneous). A Racepak G2X Pro Data
Logger is used to provide the positions of the acceleration
and brake pedals.

5) Proprioceptive Information: The Racepak is also used
to record RPMs for each wheel and suspension shock travel
for the rear two wheels. Shock travel data for the front two



Fig. 6: The high-level flow of information in our data collection process, with software in red and hardware in blue.

wheels is omitted due to frequent damage to the sensors
during aggressive driving maneuvers, but will be included in
future data releases.

D. Post-Processed Data

In order to increase utility and ease-of-use of the dataset,
we provide the raw data and the outputs from some existing
modules that have been integrated into our software stack
(Fig. 6) and commonly use as inputs to our own algorithms:

1) TartanVO: We run TartanVO [28] on the platform,
which takes in the stereo images from the MultiSense as in-
put. It outputs an odometry estimate, a predicted pointcloud,
and top-down height and RGB maps, all at 10Hz.

2) Roughness Cost: We produce a roughness cost that
describes the bumpiness of terrain as we drive over it, derived
from a sliding window of Z-axis linear acceleration values
from the IMU as described in Guaman Castro et al. [20].

3) Odometry and Registered Pointcloud: In addition to the
odometry provided by the Novatel system, we also provide
an estimated output by Super Odometry [29]. The high
accuracy and frequency of this output allows for cleaner
results in tasks such as pointcloud registration which is in
turn important for other downstream tasks.

4) Local LiDAR Maps: Using the registered pointcloud
provided by Super Odometry, we generate a birds-eye-view
feature map 200x200m wide at .5m resolution. This map
provides geometric information about the environment (Fig.
7), with features consisting of the following:

• Min/Max/Mean Height of Points
• Roughness
• SVD Features
• Estimated Ground Height
• Estimated Ground Slope (X, Y, Magnitude)

E. Data Pipelines

1) Formatting: We provide the data in two main formats,
the first one being the rosbags that they were originally
recorded as. This allows users to test how their algorithms

Fig. 7: Using the registered pointcloud, we provide local
maps that contain various geometric features.

might perform in different environments in real-time. The
second format is as a set of sequences similar to the
KITTI format [30]. For each bag, a folder is created and
a subfolder for each modality is initialized. The samples
across all modalities are then timesynced and then placed
in their respective subfolders (e.g. ’pointcloud 1/0000.bin’
and ’image/0000.jpg’ are associated with each other).

2) Reconfiguration: We have post-processed our data in a
way that makes sense for our own algorithms, but our ATV
platform is somewhat unique. Across different robots, the
optimal parameters for elements such as sample frequency,
map size, and map resolution vary. For example, a smaller
robot with better agility might require a map with finer than
.5m resolution. In order to make our data more directly
applicable to other platforms, we provide scripts that allow
users to regenerate the dataset with different parameters as
they see fit.

3) Utilities: As previously mentioned, we collect meta-
data and some annotations during data collection. We provide
scripts to take advantage of this metadata in order to filter the
data by various elements and therefore increase the utility
of the dataset for different learning tasks. For example,
given the whole dataset, a user can easily create subsets
grouped by components such as speed, GPS bounding box
(we provide a GUI for easily generating bounding boxes),
lighting conditions, or driver (Fig. 8). This is especially



Fig. 8: Our dataset covers over 255 acres collected over seven hours. Using the accompanying metadata, the it can easily
be split into groups by aspects such as speed, GPS bounding box, and time of day.

Fig. 9: In cases where conditions like poor lighting affect
camera performance, LiDARs can allow a robot to still
understand its surroundings.

useful for testing model generalizability by training on one
location/condition, and testing on another.

4) Common Framework: The infrastructure we have de-
veloped has streamlined our data collection procedures to
make it easy to train models on processed datasets as well
as test our algorithms in real-time. By continuing to follow
the same procedures, the data we collect in the future can
easily be merged into our existing datasets. Likewise, other
researchers can use our tools when collecting their own off-
road driving data which could eventually lead to a larger
multi-site, and multi-vehicle dataset.

IV. IMPACT ON CURRENT AND FUTURE RESEARCH

While we do not provide any explicit supervision labels
(e.g. segmentation masks, classification labels) outside of an-
notations, the several modalities and actions that we provide
facilitate a number of self-supervised learning tasks. Our
original TartanDrive has already benefited off-road research
immensely, and we believe the categories listed in Table I
are only a subset of the research topics TartanDrive 2.0 can
bolster.

Fig. 10: An example of the overlap between a single scan
from all 3 LiDARS and our camera. Points are colored by
forward distance from the vehicle.

A. Perception - Cross-Modal Supervision:

Our data was used by Guaman et al. to visually predict a
bumpiness cost supervised by an IMU-derived metric [20].
With the addition of LiDAR in our dataset, we can advance
algorithms by providing information in scenarios where
cameras fail (Fig. 9) and learning from a much more accurate
source of odometry and depth (Fig. 10). For example, Chen
et al. accumulates near-range LiDAR measurements to learn
long-range visual traversability model [19]. Meng et al. train
a model that uses images to predict feature maps supervised
by lidar inputs [18]. However, these works rely on off-road
driving datasets that are not publicly available. By releasing
data in a similar domain with the same modalities, we lower
the barrier to entry for expanding on this field of research,
and allow a common point of comparison.

B. Perception - Map Completion:

Prediction of occluded and sparsely sensed areas enables
faster safe navigation in occluded area [18,32]. Our generated
accumulated maps are being used as a supervisory signal in



Dataset State Action Image Pointcloud Heightmap RGBmap IMU Wheel RPM Shocks Metadata Labels
RUGD [7] No No Yes No No No No No No No Yes

Rellis 3D [6] Yes Yes Yes Yes No No Yes No No No Yes
Wild-Places [11] Yes No No Yes No No No No No No Yes

Montmorency [31] Yes Yes Yes Yes Yes No Yes No No No Yes
Verti-Wheelers [10] Yes Yes Yes No No No Yes Yes No No No
TartanDrive 1.0 [5] Yes Yes Yes No Yes Yes Yes Yes Yes No No

TartanDrive 2.0 (Ours) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No

TABLE I: Overview and comparison of various off-road driving datasets

Fig. 11: In TartanDrive 2.0 we collect a higher concentration
of data at higher speeds than in TartanDrive 1.0, reaching up
to 15m/s.

our ongoing research in map completion and can also serve
as a common benchmark for other approaches.

C. Perception - Ground Height Estimation:

An understanding of the support ground surface in off-
road terrain is essential for successful navigation. We en-
able methods of learning this feature by providing multiple
modalities as inputs and a 3D model of the car that can be
used alongside odometry estimates to provide supervision of
the true ground surface.

D. Planning - Learning from Demonstration:

The actions derived from human teleoperation coupled
with sensor inputs can be used to learn models that can
reason about what areas are more traversable than others.
Triest et al. treats teleoperated driving as expert demonstra-
tions and use inverse reinforcement learning to birds-eye-
view costmaps from the LiDAR feature maps [21].

E. Controls - Aggressive Maneuver Driving:

The unstructured nature of complex terrain makes it dif-
ficult to drive aggressively at high speeds without losing
control. Our new dataset contains a higher proportion of
speeds beyond 7m/s than before. Some of our ongoing
research on learning vehicle dynamics models is supported
by this data.

V. CONCLUSIONS AND FUTURE WORK

We have presented TartanDrive 2.0, which provides sig-
nificant improvements over the original TartanDrive. We
emphasize how the inclusion of more modalities can benefit
research in self-supervised learning, and how more data and
better infrastructure allow it to scale up to the needs of
large models. The tools that we release with the dataset
have streamlined our data collection, facilitating our plans
of collecting more data on our existing site as the seasons
change and then releasing that data over time.

Despite the major improvements in this generation of our
dataset, there remains a number of directions to pursue in
order to further increase its quality and utility. For exam-
ple, while LiDAR sensors are useful in much of modern
robotics research, there has also been an increasing amount
of research in using passive sensors for perception [33,34].
To that end it would be helpful to add sensors like thermal
cameras in the near future.

We also plan to include audio and language in our data.
There is an increasing amount of research in foundation
models and vision-language models [35,36], some of which
have already demonstrated improvement in some robotics
applcations [37–40]. We hypothesize that learning the rela-
tionship between driver dialogue and their actions and/or the
resulting environmental interactions might be supplemental
in training large neural networks. Apart from recording
dialogue, we also plan to record audio of the interactions
between tires and the ground as we drive through different
terrains, as Zurn et al. have shown that this information can
be used to learn an understanding of complex terrain [41].

Additionally, our test site is very large and complex, but
we have found that our own algorithms are close to enabling
the ATV to successfully traverse much of the terrain. This
brings up the issue of overfitting, and whether or not our
algorithms would be able to reach the same level of perfor-
mance in unseen, challenging terrain. By releasing our tools
alongside the dataset we hope that others will contribute data
from other locations in order to collaboratively form an even
larger dataset. However, regardless of external contributions,
we plan to collect data in other off-road sites with different
types of challenging terrain that will allow ourselves and
others to test generalizability and online adaptation of our
algorithms.
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