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Abstract— Multi-view stereo omni-directional distance es-
timation usually needs to build a cost volume with many
hypothetical distance candidates. The cost volume building
process is often computationally heavy considering the limited
resources a mobile robot has. We propose a new geometry-
informed way of distance candidates selection method which
enables the use of a very small number of candidates and
reduces the computational cost. We demonstrate the use of the
geometry-informed candidates in a set of model variants. We
find that by adjusting the candidates during robot deployment,
our geometry-informed distance candidates also improve a
pre-trained model’s accuracy if the extrinsics or the number
of cameras changes. Without any re-training or fine-tuning,
our models outperform models trained with evenly distributed
distance candidates. All the pre-trained models are released as
hardware-accelerated versions with a new dedicated large-scale
dataset.

I. INTRODUCTION

Distance perception is a key requirement in mobile robots
that need to navigate and avoid obstacles. A larger field-of-
view (FoV) and faster distance perception enable a robot to
more effectively gather information about its surroundings,
with omnidirectional sensing being most desirable. Presently,
LiDAR devices are the go-to sensors for distance perception
due to their accuracy and high update speed. However
LiDARs are mechanically complex, and this complexity
increases with an increased number of sampling points. It
is technically difficult and prohibitively expensive to achieve
both large FoV and high resolution with LiDARs.

Using multiple cameras as a multi-view stereo (MVS)
camera set can provide high-resolution omni-directional dis-
tance perception with much lower mechanical complexity
and cost. Recent research has demonstrated that using multi-
ple cameras with large FoV lenses (e.g., fisheye lens) can
achieve omni-directional distance estimation [1], [2], [3].
Compared to LiDAR devices, vision-based distance estima-
tion typically provides larger FoV and denser measurements.
However, two challenges prevent MVS-omni-directional so-
lutions from being the go-to sensor choice: 1)they are com-
putationally expensive and; 2) they are difficult to deploy.

The majority of the MVS-omni-directional models, both
learning-based and non-learning, utilize a cost volume struc-
ture that aggregates visual features by using virtual distance
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Fig. 1: After training, using our geometry-informed (GI) distance
candidate distribution, the baseline distance between cameras can
be changed and the model’s performance can be restored without
fine-tuning.

candidates along a viewing direction. The model compares
the features at all candidates that are present in the cost
volume and picks the best weights for a linear combination of
the given candidates. This cost volume approach consumes
a significant amount of computing resources, which grows
depending on the number of cameras and the number of
distance candidates.

For deployment, cameras in an MVS-omni-directional
system typically need to be placed such that maximum FoV
can be achieved with minimum occlusions from the robot
(self-occlusion). For learning-based methods, if the location
or number of cameras is changed to mitigate occlusions, the
method typically suffers significant performance degradation
as the position of corresponding features in the camera
images is changed, hence for the same distance candidates
the patterns of accumulated features in the cost volume that
differ greatly from training data.

To resolve the above issues related to learning-based visual
omni-directional distance estimation, our insight is that we
can train a model to utilize a small number of virtual distance
candidates by picking distance candidates in a way that
is informed by the geometry of the camera configuration.
For a known set of camera extrinsics, we can select the
candidates such that the positional displacement for the
same feature sampled at two consecutive distance candidates
are similar across all consecutive pairs of candidates. This
ensures a similar pattern of feature accumulation in the cost
volume, allowing the model to more effectively determine
the best interpolation weights between a pair of consecutive
candidates. This enables us to create models with a much



lower number of candidates (16 or 8) compared to previous
methods, significantly reducing computational cost. We are
also able to compute such distance candidates for new
camera configurations during deployment, allowing a trained
model to be used and maintain its performance even if the
camera extrinsics or the number of cameras is changed. In
this work, our contributions are

• A geometry-informed (GI) distance candidates selection
method that enables the use of fewer candidates and
change of extrinsics for deployment.

• Demonstration of a relaxed version of camera lay-
out that can generate omni-directional distance estima-
tion with self-occlusion explicitly handled and variable
translations among the cameras.

After training on our dedicated new dataset, our model can
efficiently generate omni-directional distance from multiple
cameras with self-occlusion explicitly handled, even if the
number and position of the cameras change during physical
deployment. The code, pre-trained model, and the dedicated
dataset are available through the project webpage.

II. RELATED WORKS

Estimating distance from more than one camera is a
common and fundamental capability of robot systems. There
is a vast body of work that covers various topics, of which
we will concentrate on two most closely related to ours.

A. Multi-view Omnidirectional Distance Estimation

The most relevant non-learning model is from Meuleman,
et. al. [2] where they generate distance predictions for
a reference fisheye image by selectively fusing informa-
tion from other fisheye image views. A complete omni-
directional distance prediction is then made by stitching
multiple estimations together. They also build a cost volume
to aggregate information across different distance candidates.
For efficiency, the number of candidates is kept at 32. Since
the model is non-learning-based, there is no training and it
can be deployed on various camera layouts. This model is
one of our main baseline models.

For the learning-based models, SweepNet and OmniMVS,
by Won, et. al. [1][4][5] are the standouts among the early
approaches. Like the non-learning models, SweepNet and
OmniMVS will build a cost volume for a fixed number
of candidates. This number is configurable but in order to
achieve desired accuracy the value is set at around 100 or
200. The cost volume is consumed by the downstream part
of the model, typically layers of 3D Convolutional Neural
Networks (CNN), and distance values are estimated. Later,
Su, et. al. [6] implemented a hierarchical version that makes
distance predictions on different scales, where at each scale,
a cost volume is built in the same way. The above models
are trained with a fixed number of cameras and placement.
When the camera layout changes, new training and datasets
may be required.

Two recent works are closely related to our approach.
One conducted by Chen, et. al. [7] constructs multiple
cost volumes for unsupervised learning. They use feature

variance to compare the cost volumes [8]. Our approach
is similar with the difference being that we handle self-
occlusion explicitly. The other is OmniVidar [3], which turns
omni-directional distance estimation into multiple rounds of
binocular stereo estimations. On a high level, the learning-
based part of this approach is camera layout agnostic as long
as we can cover the final omni-directional FoV by undistort-
ing and rectifying the input fisheye images along different
orientations. However, this process needs to be manually and
carefully designed for every new camera layout. Our model
can accommodate camera layout change through an easier
process with fewer manual procedures.

B. Multi-view Stereo (MVS)

Multi-view stereo (MVS) has a longer history compared
with the aforementioned multi-view omni-directional dis-
tance estimation. MVS studies are more focused on re-
constructing the 3D geometry of an object or a scene,
other than providing distance estimations with respect to a
robot. Similar to omni-directional distance estimation, MVS
studies use both non-learning [9][10][11][12][13][14] and
learning-based approaches [8][15][16][17][18]. The result
of an MVS method is usually a volumetric representation
(e.g., voxel grid surface), point cloud, or surface mesh.
Inside these learning-based models, a cost volume can be
constructed following [8]. Most of the approaches use a
reasonably large number of distance candidates. Some works,
e.g. [19][20][21], explore multi-scale or adaptive candidates,
which may use fewer candidates but need to do the comput-
ing in an iterative way, leading to additional computational
overhead.

III. METHODS

A. Target Configuration

For real-world testing, we use an evaluation board with
three fisheye cameras pointed in the same direction and ar-
ranged in a triangular formation as in Fig. 3 and the training
layout in Fig. 8. This target configuration enables an aerial
robot to have omni-directional vision by placing cameras
safely on top of its body, e.g. Skydio 2+ Drone. Additionally,
this target configuration is especially challenging due to the
fact that image boundary regions from fisheye lenses are
extensively used where good calibration is hard to achieve.
We utilize the TartanCalib toolbox to get better calibration
results with the Double Sphere camera model[22][23].

B. Model Overview

Similar to [1], our model builds a cost volume from
spherically-sweeping learned features and then regularizes
this cost volume to achieve a probability distribution of
the true distance for each pixel. First, the model takes
in three fisheye images during training. Feature maps are
extracted from the images with a shared 2D-convolution
feature extractor. Next, spherical sweeping is employed using
a set of distance candidates to warp the other fisheye images
into the reference image frame at the candidate distance.
To aggregate all of the views into C channels, differing



Fig. 2: Model Overview. The model takes three fisheye images as input during training and performs learned feature extraction with a
shared feature extractor, builds a cost volume with spherical sweeping, and regularizes the distance with a 3D U-Net [1].

from prior works in omni-directional vision with fisheye
images, one of our model variants (introduced in Section
IV-A) uses feature variance to build the cost volume, similar
to [8]. By using feature variance as opposed to concatenating
the feature vectors together for each pixel for each warped
image, the channel dimension is reduced by a factor of
N (number of images). Additionally, because the variance
between a set of vectors results in a same-length vector no
matter how many vectors there are from the input images,
the model can explicitly exclude self-occluded pixels while
maintaining the required length of the C dimension. We
utilize a 3D U-Net typed regularizer to process the cost
volume into a probability distribution. The probability for
each candidate is used in a weighted sum to regress the
distance for each pixel.

Fig. 3: Camera Configuration for the evaluation board. Three fisheye
cameras are mounted pointing upwards in a triangular formation.
A LiDAR, unused for this study, introduces self-occlusions.

C. Distance candidate selection

Previous work on distance perception commonly used dis-
tance candidates spaced evenly in the inverse distance space
(hereinafter named EV). In the case of plane-sweeping[8],
EV candidates have the property that moving an object
between consecutive candidates results in a constant pixel
displacement of the corresponding features in feature space.

In the case of sphere-sweeping[2][5], EV candidates gen-
erally do not result in constant feature displacement due to
the non-linearity of spherical sweeping. However, for small
camera baselines, they provide a close approximation, as

Fig. 4: GI and EV candidates for different camera spacings. EV
candidates approximate constant feature displacement steps for
small spacings (baselines), but result in highly uneven steps in large
spacings. GI candidates generate constant displacement steps as a
function of camera spacing.



Fig. 5: Sphere-sweeping geometry. We pick distance candidates
that result in constant steps in ray angle corresponding to constant
displacements in the projected feature.

shown in Fig. 4. As previous work on sphere-sweeping has
focused on small baseline configurations and large numbers
of candidates[1][4][5], the use of EV candidates caused
negligible impact on performance.

For better efficiency, we propose to use a small number
of geometry-informed (GI) candidates computed for specific
camera extrinsics and ensure similar displacement for each
step between distance candidates. As feature position in the
projected image is proportional to the feature ray angle, GI
candidates are obtained by developing distance as a function
of ray angle and sampling it with evenly spaced ray angle
steps (see Fig. 5). Later in the experiment section, we show
that the use of GI candidates improves distance prediction
accuracy in the cases of large camera spacing and low
candidate count.

D. Volume Loss

As seen in previous work [1][3][6], the main loss function
of choice for the omnidirectional stereo vision supervised
learning problem has been L1 loss on the final distance map.
However, there is a rich amount of information in the cost
volume itself before aggregation. Before linear combination
but after softmaxing, the cost volume represents a probability
distribution of which distance candidate is the most likely to
be the true distance. In actuality, this probability distribution
should look like the interpolation between the two closest
distance candidates to the true distance value. Therefore, be-

Fig. 6: Our omni-directional stereo vision with fisheye images
dataset consists of about 95K samples from over 60 Unreal Engine
4 high-fidelity simulation environments, manifested in various scene
styles.

cause the ground truth probability distribution is known and
the softmax’d cost volume represents a predicted probability
distribution, a soft cross-entropy loss function can be used
as a more informative loss function [24]. Combined with the
GI distribution described in the previous section, using the
volumetric soft cross-entropy loss leads to accuracy gains.

E. Dataset

We create a new dataset consisting of about 95K samples
collected from over 60 Unreal Engine 4 simulation environ-
ments used in the collection efforts of TartanAir [25]. This
dataset is over 10x larger than any currently available dataset
for omni-directional stereo vision with fisheye images [1]
and will be released for download. The camera layout is
the training layout in Fig. 8. Each sample consists of three
RGB-dense distance pairs in fisheye format. There are a large
variety of outside, urban, indoor, and natural environments
as shown in Fig. 6.

IV. EXPERIMENTAL PROCEDURE & RESULTS

A. Model Variants and Camera Layouts

We propose that geometry-informed (GI) distance candi-
dates can directly improve distance estimation. GI candidates
can be adapted to most of the MVS-omni-directional vision
models where a fixed number of candidates are applied. In
this work, we use a set of model variants to show that GI
candidates can work well with small candidate numbers and
changes in camera layout.

For a baseline comparison, we build a model for the 3-
camera layout shown in Fig. 2 using a similar structure as the
OmniMVS model[1]. We then have two simple variants from
OmniMVS, based on EV and GI candidates. We are targeting
models with fewer candidates to have better efficiency. We
designate model names E16 and E8 for baseline models
with only 16 and 8 candidates, while G16 and G8 for the
GI ones. Using the same naming, let G16V be the model
trained with the volume loss function. Finally, we also apply
the variance cost volume [8] to G16V and get G16VV.
One detail about G16VV is that when calculating the cost
volume, we explicitly handle the self-occlusion from the
robot. This is done by additionally showing the model a
binary mask for every input fisheye image. Such a mask
marks non-occluded pixels as valid pixels. When building
the cost volume, a variance value is calculated by only
considering visual features from the non-masked regions.
G16VV is smaller than other variants as a result of using
feature variance for building the cost volume. Besides E16
and E8, we also make compare with the RTSS model [2].

All models are trained on the dataset in Section. III-E.
The distance range is fixed at 0.5-100m during training.
For comparison purposes, all models are trained with the
same fixed learning rate (0.0001) and batch size (16). We
reserve some simulation environments from training and
collect ground truth data for evaluation.

Several camera layouts are used in the following exper-
iments. As shown in Fig. 8, all models are trained using
the training layout. This three-camera plenary setup is the



Fig. 7: Comparison with synthetically-generated images from the unseen environments. a, b: second and third views. c: equirectangular
projected reference (first) view. d, e: outputs of RTSS [2] and G16VV (ours). f: ground truth distance aligned with the reference view. In
scenes with low light, high-frequency features such as patterns and trees, and thin objects, G16VV is more accurate and it can resolve
fine details.

minimum to cover the semi-sphere FoV on top of the
plane. This setup also ensures that the robot body at the
middle of the cameras will not block the view of more
than two cameras, making stereo distance estimation possible
for all FoV directions. A location on the plane is picked
as the reference and the omni-directional distance image is
generated w.r.t this reference location. We test the models on
different layouts representing the change of spacing, number
of cameras, and reference location.

B. Evaluation with the Same Camera Layout

We first collected over 1000 samples using testing layout 1
in Fig. 8. Model predictions are compared with ground truth
omni-directional distance images. We use simple metrics
including mean absolute error (MAE), mean root square
error (RMSE), and the Structural Similarity Index (SSIM) as
in [2]. All metrics are computed using the inverse distance
(ranging from 0.01 to 2). We use a single NVIDIA V100
GPU for measuring the execution time and GPU memory
usage. Table I shows that with 16 or 8 candidates, a model
can have very competitive efficiency and GPU consumption
compared to the real-time baseline model (RTSS) [2]. This

Fig. 8: Camera layouts in experiments. From left to right: training,
testing 1 (same as training), testing 2 (larger spacing, new reference
location), testing 3 (larger spacing, new reference location, and
more cameras).

TABLE I: Comparison using the same camera layout
model candidates metrics time GPU (MB)

type num MAE RMSE SSIM (ms) start peak
RTSS[2] EV 32 0.053 0.101 0.776 144 330 4240

E8 EV 8 0.013 0.032 0.862 65 790 1030G8 GI 8 0.012 0.029 0.867
E16 EV 16 0.011 0.028 0.876

111 790 1230G16 GI 16 0.010 0.028 0.877
G16V GI 16 0.013 0.029 0.861

G16VV GI 16 0.012 0.028 0.872 114 800 1090
EV: evenly distributed candidates. GI: geometry-informed.

table also shows that when using very few candidates, such
as E8 and G8, the geometry-informed one tends to be better.

C. Evaluation with Different Camera Layout

To show the GI candidates’ ability to handle a camera
layout that is different from the training setup, we collect
over 100 samples from the evaluation environments with
larger distances among the cameras, as illustrated in testing
layout 2 Fig. 8. For this test, we only use the variants that
have 16 candidates. In the tests, we apply a trained model
twice, one with the candidates it was trained on, and the
other with the dedicated new candidates that are calculated
concerning the deployed camera layout (denoted as new in
the following table). Table II shows that the GI candidates
can boost the performance of a trained model when deployed
on a camera layout that has longer displacement than the
training data. We also observe from Table II that model
G16V, which is trained with our volume loss, tends to have
better SSIM values.

Using the G16VV model, since it builds the cost volume
with feature variance across all views, we can demonstrate
that using the GI candidates, our model can also handle the
change of camera number. A separate set of over 100 samples



Fig. 9: Sample results on real-world data. Model G16VV. Row a-d: distance estimation, three camera views. Columns: A - Original input
image, B - Input image warped using the predicted distance (Raw a). Purple lines: vertical guidelines. If the distance prediction is good,
then the pixels on the purple line across Column B should align among Row b-d. Our model trained only on synthetic data evaluated on
real images. The model can be optimized with NVIDIA TensorRT for better inference speed on real robots.

is collected from evaluation environments with four cameras
laid out as testing layout 3 in Fig. 8. We show a sample result
in Fig. 10. The quantitative results are also listed in Table II.
G16VV gains better performance from only changing the
candidate values without any new training. On the speed side,
from 3 cameras to 4 cameras, the processing time of G16VV
adds only 6ms while the RTSS model experiences a 35ms
time increase. On the GPU memory side, since the RTSS
model precomputes the best view pairs for every output pixel,
its memory does not change. For G16VV, we observe an
increase of about 60M Bytes.

D. Deployment & Hardware Acceleration

We deploy the model on small-drone-compatible compute
devices, namely the Nvidia Xavier NX and Orin NX. To
obtain better performance we utilize the Nvidia TensorRT
SDK for model optimization and hardware acceleration. We
demonstrate that our optimized model is capable of running
in real-time at approximately 10Hz on the Orin NX with

Fig. 10: Sample results of four-camera layout. a: first view. b:
second view. c: camera layout. d: RTSS, e: G16VV w/ training
candidates. f: G16VV w/ adjusted GI candidates calculated w.r.t.
camera layout. g: ground truth distance map. h: ground truth
equirectangular image view. When adjusted GI candidates are used,
G16VV is more accurate and resolves more details.

TABLE II: Comparison using new camera layouts
new

layout model candidates metrics
train eval MAE RMSE SSIM

3 cam
1m apart

RTSS[2] - EV 0.124 0.217 0.697

E16 EV EV 0.033 0.053 0.768
EV new 0.018 0.037 0.829

G16 GI GI 0.030 0.050 0.786
GI new 0.020 0.029 0.823

G16V GI GI 0.029 0.056 0.823
GI new 0.015 0.034 0.868

4 cam
1m apart

RTSS[2] - EV 0.090 0.147 0.637

G16VV GI GI 0.024 0.041 0.817
GI new 0.016 0.033 0.860

Candidates type: EV - evenly distributed, GI - geometry informed, new -
GI for the 1m spacing. All models are trained with a camera spacing of

about 0.3m and tested with 1m.

hardware acceleration. Along with this paper, the hardware
accelerated model will be released.

V. CONCLUSION
This work introduces Geometry-Informed (GI) distance

candidate selection for omni-directional vision models. GI
candidate approximate constant feature displacement be-
tween distance candidates. Additionally, GI candidates give
the model extra flexibility after training: camera spacings
(stereo baselines) can be adjusted after training without fine-
tuning while maintaining good performance. We develop a
set of models with our improvements and compare them
against available state-of-the-art baseline models and show
accuracy, speed, and memory consumption improvements.
Lastly, we release several model variants and our dataset for
use by the community.
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